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J. Phys. A: Math. Gen. 19 (1986) 859-863. Printed in Great Britain 

The short-range behaviour of the deuteron wavefunctions with a 
regularised tensor potential 

S G Cooper and M W Kermode 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, PO 
Box 147, Liverpool L69 3BX, UK 

Received 16 August 1985, in final fonn 7 October 1985 

Abstract. It is shown that deuteron wavefunctions which arise from a regularised tensor 
potential, V,(r) -+ constant as r -+ 0, have a rather unusual short-range behaviour. The 
reason for the node in a recent model for the deuteron is made clear. A second regular 
solution is also found. 

1. Introduction 

Kukulin et al (1984) have presented a model for the nucleon-nucleon potential which 
has a forbidden state suggested from a six-quark model with one-pion exchange. In 
this model, the deuteron waiefunctions have a node at short distances. The latter is 
stated to be a consequence of the two-channel potential model with local potentials 
(Kukulin et a1 1984). In this paper, we shall show that although this is the case, the 
D-state wavefunction at short distances behaves like (constant)r3 In r rather than 
(constant)r2 from Reid-type potentials (with no small soft core) (Reid 1968) or 
(constant)r3 for the parametrised Paris wavefunction (Lacombe et al 1981) and some 
non-local potentials (Friar and Fallieros 1984). This is because the tensor potential is 
regularised at the origin, i.e. VT( r )  + constant as r + 0. However, the relative values of 
the constant are such that w / u  remains positive, regardless of the negative behaviour of 
In r. We shall show also that, in principle, it is possible to have the behaviour U - r5,  
w - r3,  but this would require a very special potential. 

2. Deuteron wavefunctions 

We shall not be concerned about the presence of the node in the wavefunction. The 
behaviour of w ( r )  mentioned above holds for any model with a regularised tensor 
potential. The main emphasis in this paper is on the behaviour of the wavefunctions at 
short distances in the context of the Schrodinger equation and a potential model. To 
illustrate the procedure most clearly, we shall follow Kukulin et al in regularising the 
central potential also. Our results are also valid under the usual assumption that V,-( r )  
is no more singular than r - ’ .  Thus, we can define 

a , ,  =-lim[(2m/h2)v,(r)+cu2] 

a,2  = -1im [ ( 2 m / h 2 ) J 8 ~ , ( r ) ]  

r+O 

r - 0  
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= -1im [ ( 2 m /  h2) (  v,( r )  - 2 v,( r )  - 3 vLS( r ) )  + a’] 
r + O  

where - h 2 a 2 / 2 m  is the binding energy of the deuteron. 

a, = a:;’+ aj:’r+ a!,?r2+. . . 
For the potential of Kukulin et al 

at small r, where a!;] is a constant. To avoid distracting algebra we shall take a!:’ = 0 
and a!f’=O, so that a, may be regarded as constant. This does not affect our main 
result. It will modify only the recurrence relation for those coefficients in the series 
expansion of the wavefunctions which are higher than needed. First, we consider the 
case a‘,;’> 0, which corresponds to the case of Kukulin et al. 

Thus, we need to solve the equations 

U ” +  a , , u  + 2 , ’ W  = 0 

w”+ a , *u  + az2w -6r-‘w = 0 
(1) 

( 2 )  
with a ,  taken as constant. Double differentiation of equation (1) and substitution of 
w and w” leads to the following equation for U :  

( r * u ” ” -  6 u “ )  + [( a, ,  + a2*)r2u“-  6a l ,u ]  - r2 (  a:, - a, , a Z 2 ) u  = 0. (3 1 
Alternatively, we can obtain the equation for w :  

( r4w”“  -6r2w”+ 2 4 r d  - 36w) + r 2 [ (  a,,  + a 2 2 ) r 2 ~ ” -  6a,,  w] - r4( a:, - a,,a,,) w = 0. 

of these equations, we write 

(4) 

Using the Frobenius method (see, e.g., Protter and Morrey 1969) for the solution 

X 

U = b,,r“+?, bo # 0. 
n =O 

Equating to zero the coefficient of the lowest power of r in equation (3), we obtain 
the indicia1 equation, which has solutions 

c=O,  0, 1 or  5. ( 5 )  

The first two of these values give solutions which d o  not satisfy the boundary condition 
u ( r ) - , O  as r + O  and can be discarded. We are left with the case in which the two 
values of the index differ by an  integer, which gives rise to the possibility of a logarithmic 
term in r (Protter and Morrey 1969). 

The same method for equation (4) and 
x 

w= C K,,rn+‘, KO # 0, 
n = O  

leads to 

E =  -2, 2 ,  3 and  3. (6) 
The negative value can be discarded. One can show that T = 2 corresponds to c = 0, 
so that this too can be discarded. The case of equal roots is more awkward than that 
when the roots differ by an  integer, so we shall continue with the results (5) and show 
that (6) follows from them. 

For c = 5, we have one solution of the form 
- 

U , =  bnrn+’, bo= 1. 
n = O  

(7 )  
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The second solution has the form 
X 

u2= a In r U ,  + d,r"+l, do= 1 ,  
n =O 

where a may be zero (Protter and Morrey 1969, Cornille 1962). Substituting the 
wavefunction (8)  into equation ( 3 ) ,  we find that 

di = 0,  if i is odd 

d 2 = - ~ , , / 6  

and 

a = a:,/100. 

Other coefficients may be obtained from lengthy recurrence relations which we d o  not 
give here. It follows that the general form for the wavefunction u ( r )  is 

X 3 cc 

u = A  0 . 0 1 ~ : ~ l n  r bnrn+5+ dnrn+l + B  Fnrnc5 ,  ( 12 )  ( n=O n = O  ) n=O 

with A and B as arbitrary constants and 6o = bo = do = 1 ,  where 6;, contains b, and dn+4. 
Substituting for U into equation ( l ) ,  we obtain 

X 

0 . 0 1 ~ : ~  In r [(  n + 5 ) (  n + 4 )  + a l l r 2 ]  b n P 3  
n=O 

cc 3 

+0.01a:, ( 2 n + 9 ) b ~ " ' ~ +  [ ( n + l ) n + a , , r 2 ] d n r n - '  
n=O n = O  

L E  

- ( B / a I 2 )  [ ( n  + 5 ) ( n  + 4 ) + ~ ~ ~ r ~ ] b , r " ' ~ .  (13 )  
n=O 

The dominant terms for small r give, using equations ( 9 )  and (10 )  

w = - (A /a ,2 ) r3[0 .01a~2(20  In r + 9 )  - a: , /6]  - ( B / a I 2 ) 2 0 r 3 .  (14 )  

We note that the terms r3  and r3 In r reflect the double root of 3 for E ( 6 ) .  
If A # 0 we see that for small r, 

u = A r  

w = -0.2Aa,,r3 In r 

so that 

w / u  = -0.2a,,r2 In r, 

which is positive for small r, since a, ,  is positive in the model of Kukulin et al (1984). 
This shows that w is negative because U is negative. 

If A = 0, the second regular solution becomes important and then 

U = Br5 

w = - (20/a12)Br3 .  

In general, a linear combination of the two results is necessary. It is only in a very 
special case that the boundary conditions will lead to A = 0. A similar result can be 



862 S G Cooper and M W Kermode 

found in the simpler case when the term (-6/ r 2 )  is removed from equation (2). The 
exact solutions given by Kermode (1967) to a related problem have 

u = Cr, w = Dr, 

except in the special case A+k++ A-k-  = 0 (in the notation of that paper with a = 0), 
when 

U = cr3, w = Dr. 

We have considered the case a',?'>O. In the parametrisation of their potential 
(the Paris potential), Lacombe et a1 (1980) have, for small r, the case a(,?)=O and 
a',:'< 0. (They have also a , ,  + a l l / r  and a22+= az2/ r, but this does not affect the present 
argument.) Following the previous procedure, we find c = (0), 1, 1 and 6 and E =  ( - 2 ) ,  
3, 3 and 4. However, the simplest approach is to write B = ( - 2 0 B + a : , A / 6 ) / a I 2  in 
equations (12) and (14) and then take the limit al2+O (with A and B remaining finite). 
This gives 

u = A r  (16a) 

w 2 Br3 (166) 

in agreement with the parametrisation of the Paris deuteron wavefunctions ( Lacombe 
et a! 1981). The term in r3 In r no longer appears since its second derivative contains 
5r which would have no other term to cancel. Previously it was cancelled by the lowest 
power from the term a12u. We note that A and B are independenr. This is a special case. 

For the Reid potential, a12 is replaced by r - 'a12  and the wavefunctions behave like 

so again w /  U is positive at small r (since a,2 > 0). 

3. Conclusion 

We have considered the short-range behaviour of the deuteron wavefunctions arising 
from various forms for the tensor potential. In particular, we have shown that w/u is 
positive in the model of Kukulin et a1 because the tensor potential has a negative value 
at the origin. Thus, the node in the D-state wavefunction w is a consequence of both 
the node in the S-state wavefunction U and the fact that w / u  is positive at large r. 
Kukulin et a1 indicated that it was necessary to have a non-local potential to obtain 
a negative value for w / u  at small r. However, we see from equation (156) that a 
negative w/ U can be obtained if the tensor potential has a positive value at the origin. 
We know of no reason why VT(r)  should not be repulsive at short distances, where 
the nucleon-nucleon interaction is very complicated. 

In table 1, we summarise our results. These show the interesting behaviour of the 
ratio of the wavefunctions at short distances as V,(O) varies from --CO through to +-CO. 

It would be most interesting to find a model in which V,(O) is positive and the static 
properties of the deuteron are reproduced. 
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Table 1. The behaviour of w / u  at short distances resulting from various values of the 
tensor potential at the origin. The fixed constant, C, is dependent on the value of VT(0) 
or limre0 rVT(r). 

VT(0) W /  U Example Equation 

-!i2 ( r - I )  lClr Reid (1968) (17) 

- m <  VT(0)<O -IClr2 ~n r Kukulin er a/ (1984) (15) 
0 Br’J Ar Pans (1980) (16) 
o<  V T < W  IClr’~n r none (15) 

( r - I )  -lCIr none (17) 
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